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An implicit finite-difference scheme is develop-cd for the efficient numerical solution 
of nonlinear hyperbolic systems in conservation-law form. The algorithm is second- 
order time-accurate, noniterative, and in a spatially factored form. Second- or fourth- 
order central and second-order one-sided spatial differencing are accommodated within 
the solution of a block tridiagonal system of equations. Significant conceptual and 
computational simplifications are made for systems whose flux vectors are homogeneous 
functions (of degree one), e.g., the Eulerian gasdynamic equations. Conservative hybrid 
schemes, which switch from central to one-sided spatial differencing whenever the local 
characteristic speeds are of the same sign, are constructed to improve the resolution 
of weak solutions. Numerical solutions are presented for a nonlinear scalar model equa- 
tion and the two-dimensional Eulerian gasdynamic equations. 

INTRODUCTION 

In this paper we consider the application of implicit finite-difference schemes for 
the numerical solution of nonlinear hyperbolic systems in conservation-law form: 

where u is an unknownp-component vector and F and G are given vector functions 
of the components of u. For simplicity, we restrict our attention to the case of two 
spatial dimensions although the algorithms described can be extended to three 
dimensions. The development presented here was motivated by our investigations 
with the Eulerian (inviscid) gasdynamic equations; consequently, this special 
case of (1) receives particular emphasis in the numerical examples. 

Implicit methods are generally chosen for their numerical stability; therefore, 
they are most often used when the stability bound of an explicit method (CFL 
condition) would be more restrictive than the desired accuracy bound. Since the 
time increment set by the accuracy requirement and the time increment limit set 
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by the stability bound are generally compatible for explicit schemes applied to (l), 
the use of an implicit scheme usually makes the tacit assumption of a priori knowl- 
edge of the solution-in particular, that the features which determine the explicit 
CFL condition are “parasitic stiff” [I] and need not be accurately resolved. Ex- 
amples of such problems are found in astrophysics, meteorology, hydrodynamics 
(see, e.g., [2, p. 295; 3]), and (for our sample calculations) transonic aerodynamics. 

In addition to an improved stability bound, an implicit method offers other 
computational advantages. For example, the extension from second- to fourth- 
order spatial accuracy can be achieved with a minimal increase in computational 
effort. The accuracy increase accrues by the use of rational-fraction or Pad6 
differencing approximations [4] which require no more spatial gridpoints for a 
fourth-order approximation than for a second-order approximation. Consequently, 
the bandwidth of the system of equations which must be solved does not increase. 

We will not attempt to further delineate the pros and cons of explicit and implicit 
methods except to note that the competitiveness of implicit methods is generally 
limited by (a) numerical efficiency and (b) weak solution resolution-the two topics 
of this paper. 

In the first section we present the development of a noniterative, second-order 
time-accurate, factored algorithm for system (1). The algorithm is easily imple- 
mented with second- or fourth-order and one-sided or central spatial differencing. 
Next, we simplify the algorithm for systems where F and G are homogeneous 
functions of degree one, e.g., the Eulerian gasdynamic equations with a polytropic 
equation of state. The introduction of the homogeneous property leads to both 
conceptual and computational simplifications. 

The second section considers the development of algorthms which improve the 
resolution of weak solutions or shock waves. In accordance with our previous 
experience with explicit schemes, we derive implicit hybrid algorithms that combine 
the spatially symmetric and one-sided schemes of Section I and maintain the con- 
servation form by the use of switching operators. 

In the final section we present solutions to the gasdynamic equations for both 
steady and unsteady flow fields at transonic Mach numbers. 

I. BASIC ALGORITHM 

A. Temporal Diferencing and Linearization 

The design of our basic implicit method is quite straightforward. The time differ- 
encing is 

ZPfl = un + + [($)” + ($)““I + O(dt3) 
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which is generally known as the trapezoidal formula [5,6]. Here u(t) = u(ndt) = U” 
where dt is the discrete time increment and the spatial dependence has been 
temporarily suppressed. If (1) is inserted in (2), one has 

p+1 = Un - dt 
2 [( g + F," + (g + $y+l, + O(dP). (3) 

The nonlinear nature of the problem presents an obvious difficulty since we want 
to solve for un+l but F"+l = F(u~+~) and G n+l = G(u”+l) are nonlinear functions of 
an+l. We remove the nonlinearity and maintain the order of accuracy by following 
a linearization procedure commonly used for the analysis and numerical solution 
of nonlinear systems of ordinary-differential equations (see, e.g., [I, 71). A local 
Taylor expansion about un yields 

Fn+l = F" + A"(u"+~ - u") + O(dt2) 
Gn+l = G" + Bn(un+l - u") + O(dt2) (4) 

where A and B are the Jacobian matrices 

A = aqat.4, B = aqat4. (5) 

By substituting (4) into (3), we obtain a linear system for zP+l : 

= [I+ +(&Afi + $Bn)] u" - dt (g + 5)" + O(dP) (6) 

where I is the identity matrix.l This equation provides a conservation-form, 
noniterative, second-order time-accurate, formula for the solution of (1). 

In the above equation and in the equations to follow, the function denoted by 
the symbol un = u(n dt) is assumed to be a solution of the partial-differential 
equation (1). When a/ax and a/+ are approximated by difference quotients (this 
section, part D), then the symbol un is replaced by z& where x = j dx, y = k L3y 
and the order symbol O(dP) will be dropped. The resulting formula will then be 
the numerical algorithm and utk will denote the numerical solution. 

The above linearization procedure (4) is the same as that used by Richtmyer 
and Morton [2, p. 2031 for a scalar nonlinear diffusion equation. The linearization 
technique used by Briley and MacDonald [8, 91 is also conceptually equivalent; 

1 In Eq. (6) and throughout the remainder of this paper, notation of the form ((8/&)An + 
(a/+) Bn)un is used to denote (a/ax) (A%“) ,+ (a/ay)(B”u”) and not (BAn/ax)uR + (aBn/QW. 
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however, they linearize each equation of a system individually and, in their applica- 
tions, do not linearize with respect to the conserved variables. An excellent discus- 
sion of the importance of proper linearization is given in the papers by Briley 
and MacDonald. Some preliminary numerical results computed using (6) were 
reported by Beam and Ballhaus [IO]. 

Earlier treatment of the nonlinear difference equations arising in the application 
of implicit methods evolved through the use of (a) explicit predictor, iterated 
implicit corrector [I 11, (b) explicit predictor, implicit corrector [12] (no iteration), 
and (c) implicit predictor, explicit corrector [13]. (For additional references on 
iterative and predictor-corrector methods see Ames [14] and Briley and 
MacDonald [8, 91.) In the present state of development, the noniterative lineariza- 
tion technique provides the most efficient algorithm. 

B. Factored or ADI Scheme 

Undoubtedly, the most significant efficiency achievement for multidimensional 
implicit methods was the introduction of the alternating-direction (ADI) [15-171 
and fractional-step algorithms [18]. These schemes reduce a formidable matrix 
inversion problem to a series of small bandwidth (usually tridiagonal) matrix 
inversion problems that have efficient solution algorithms. In our opinion, the 
AD1 (or factored) algorithm offers two distinct advantages over the fractional 
step method when the matrices A and B do not commute: (1) easier application 
of boundary conditions and (2) a steady-state solution (if one exists) independent 
of the time step At. Consequently, we have chosen the AD1 or factored scheme. 

The form of (6) suggests that we establish a factorable term in the brackets by 
adding the third-order term 

Thus, a factored scheme with the same temporal accuracy as (6) can be written 

zzr (I + $ ;; A”)(Z + + $ Bn) u” - dt (g + T)” + O(df3). (8) 

The factored form (8) reduces the two-dimensional matrix inversion problem 
to two one-dimensional problems. For example, if three-point central differences 
are used to approximate the spatial derivatives, the evaluation of r~+l requires 
the solution of two block tridiagonal systems of equations, the size of the blocks 
depending on the number of elements in the vector u. Note that the steady-state 
solution of (8) (assuming a converged solution un = @+l) is independent of d t. 
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C. SimpliJcations for Homogeneous Functions F and G 

A further increase in computational efficiency and several conceptual simplifica- 
tions arise by virtue of the following observation. Some physical systems governed 
by conservation laws, e.g., the Eulerian equations of gasdynamics, have the 
property that the nonlinear functions F(U) and G(u) are homogeneous functions 
of the components of U. More precisely, each component FC of F(u) has the property 
that FL(h) = hFE(u), i.e., F is a homogeneous function of degree one in u. By 
applying Euler’s theorem on homogeneous functions (see, e.g., [19]), one obtains 

But the right side of this equation is simply the Zth component of the vector Au 
where A is the Jacobian matrix defined by (5) (AL,, = aF,/h,), and consequently2 

F = Au, G = Bu. (10) 

The first obvious simplification resulting from (10) is that Eqs. (4) become 

F%+l = Anun+l + O(dt2), G”+’ = Bnun+l + O(At2). (13) 

The nonfactored scheme (6) reduces to 

~+$(&A~+$B~)]~P+~= [I - $(&An + $ B”)] u” + o(At3) (14) 

and the factored scheme (8) simplifies to 

(Z + $ & A”)(Z + + $ BQ) zP+l 

= (I - + & A”)(Z - + $ B%) un + O(AP). 

2 The identities (10) lead to some interesting observations. For example, if Eq. (1) is rewritten 
in the quasilinear form 

and if Eqs. (10) are inserted in (l), 

au Wu) am o 
z+ax+-= 

ay 
(12) 

then we find that it matters not whether A and B are inside or outside the spatial derivative 
operators. Formulas (10) lead to some curious identities such as A,u = B,u = 0 (A, = aA/ax) 
which must, of course, be satisfied if (11) and (12) are compatible. 
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A convenient computational form of (15) which also emphasizes the spatial 
splitting is 

- @+I = I - dt &!n Be &2 ( 2 ay 1 

( (16b) 

Thus, the recognition of homogeneous functions F and G, when they exist, 
leads to simplified algorithms. It may be of interest to note, that if the functions 
F and G of the time-dependent problem (1) are homogeneous of degree one, then 
for the steady-state equation Fz + G, = 0, G will be homogeneous of degree one 
in the components of F or vice versa. Consequently, the simplified (homogeneous) 
algorithm is also applicable for the spatial integration of the steady equations if 
they are hyperbolic in one spatial direction. 

D. Spatial DiSferencing 

Algorithms (8) and (15) are second order in At; therefore, the overall accuracy 
will depend on the accuracy of the spatial dilferencing-if the spatial differences 
are qth order the algorithm will be 2nd in time and qth in space. The practical 
limitation on the spatial accuracy comes from the “bandwidth” of the system of 
equations which must be solved. Since efficient algorithms are available for block 
tridiagonal systems of equations, we limit our attention to spatial differences that 
produce tridiagonal systems and are therefore restricted to three-point difference 
approximations. Some second- and fourth-order accurate difference approxima- 
tions to aQ/ax Ii which use only gridpoints j + 1, j, j - 1 (x = j dx) to evaluate 
the derivative at point j are ([4, Chap. 91) 

aQ 
ax j = & pSQj + o(Ax2) 

aQ 1 4 
ax i = dx 1 + P/6 Qj -t o(Ax4> 

aQ 1 v  
ax j = dx 1 _ v,2 Qi + Wx2) 

aQ 1 A 
ax j =dx 1 +A/2 Qj + o(Ax2) (17d) 
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where the classical finite-difference operators d, V, 6, and p are defined by 

AQj = Q,+I - Qj (184 

VQj = Qj - Qj-1 (18’4 

SQi = Q~+I/z - Qi-I/Z (184 

+Qi = Q~+I/z + &~-I/Z (184 
and similar equations apply for aQ/+ (v = k fly). After one of the fractional- 
difference approximations (17) is used to replace a spatial derivative, the fractions 
are cleared by multiplication. 

The difference approximations (17a) and (17b) are symmetric about point j 
and are suitable for general application of algorithms (8) and (15). The difference 
approximations (17~) and (17d) are one-sided with respect to point j and therefore 
can be applied only in special cases. For example, (17~) can be used in (16b) when 
the eigenvalues of A are all positive and, conversely, (17d) can be used when the 
eigenvalues of A are negative. For most problems of practical interest the eigen- 
values of A will not be of the same sign for all j; therefore, if (17~) and (17d) are 
applied, they must be used in combination with a symmetric approximation, 
e.g., (17a) or (17b). Such a spatial switching of schemes has practical application 
in gasdynamic calculations (Section III). The advantages of switching difference 
approximations as well as the details and importance of constructing conservative 
switching operators are discussed in the following section. 

Although the selection of (17~) or (17d) must be based on the local eigenvalues 
of A, the choice of the symmetric operator (17a) or (17b) is more arbitrary since 
it must be based on accuracy and numerical work. The increased cost of the 
fourth-order approximations (17b) compared to the second-order (17a) is modest 
if F and G have the homogeneous property. The introduction of (17b) (instead 
of (17a)) into (16b) and (16~) introduces some additional calculation in the elements 
of the tridiagonal system and the right-hand side of the equations; however, only 
a single block tridiagonal matrix inversion is still required at each step. The most 
significant additional work for fourth-order accuracy occurs in step (16a). With 
the second-order approximation (17a), step (16a) is explicit (i.e., no matrix inver- 
sion is required), but with (17b) we must solve a set of uncoupled (not block) 
tridiagonal equations for @+I. Furthermore, proper application of boundary 
conditions become somewhat more involved when the fourth-order spatial 
approximation is used. 

For clarity, it is useful to rewrite algorithm (16) with a specific difference approxi- 
mation (17) inserted. If we use second-order (17a), we obtain (after expansion of 
the finite-difference operators) 
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For computational purposes the numerical matrix multiplies of step (19a) can be 
eliminated by using the identity (10) to obtain 

- 
uj”,,:’ = uFk - (dt/4~4y)(G;,,+, - G;,k-l). 

In some of our applications of (19) (Section III), we found it necessary to add 
a dissipative term. The details of the dissipative algorithm are given in Appendix A. 

E. Stability, Dissipation, and Dispersion 

A standard von Neumann (Fourier), linearized stability analysis for the two- 
dimensional algorithm (8) or (15) with spatial difference approximations (17) 
has been performed. In the linearized analysis, the Jacobian matrices A and B are 
assumed to be constant and, furthermore, we assume that these matrices can be 
simultaneously symmetrized. For the Eulerian equations of gasdynamics (Sec- 
tion III), the similarity transformation that symmetrizes A and B is known [20,21]. 

For the one-dimensional algorithms and the special two-dimensional case 
when A and B commute, the linearized schemes are nondissipative or marginally 
stable, i.e., 

II 3” II = 1 (20) 

where 9 is the amplification matrix [2] and II * 11 denotes the spectral norm [22]. 
In general, A and B do not commute and it can be shown that 

II 9 II < 11 + (d?/2d~)~ I dj It,,]“” (21) 

where the bound is independent of n and I di lmllx is the maximum modulus of 
the eigenvalues of matrix B. Since for any given constant, say h, /I B” ]I can be 
uniformly bounded for any dt/dy < X, the stability of the scheme in the general 
case is proved (see Appendix A). 

The dispersive and accuracy properties of linearized versions of the schemes 
are compared in Appendix B. The algorithms with central difference approxima- 
tions (17a) and (17b) have lagging phase errors, while the algorithms with the 
one-sided difference approximations (17~) and (17d) have leading phase errors 
for Courant numbers less than one and lagging phase errors for Courant numbers 
greater than one. 
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It should be noted that linearized, i.e., constant coefficient, versions of algorithms 
(8) and (15) with spatial difference approximations (17a) and (17~) are equivalent 
to algorithms proposed by Gourlay and Mitchell [23, 241 for the linear system 

g+Ag+Bg=O (22) 

where A and B are constant symmetric matrices. The linearized one-dimensional 
scheme using the spatial difference approximation (17~) is the same as a scheme 
derived by Wendroff [25]. If F and G have the homogeneous property, then the 
resulting algorithm (15) for the nonlinear equation (1) appears remarkably similar 
to the (linear) algorithms of Gourlay and Mitchell (see also the book by Mitchell 
[26, p. 1851). 

‘II. IMPLICIT SCHEMES AND SHOCK RESOLUTION 

A. Dissipation and Shocks 

According to linear theory all the algorithms considered in Section I are non- 
dissipative; however, nondissipative schemes are generally considered to be 
unsatisfactory for numerically solving nonlinear hyperbolic equations when shock 
waves occur. As an example, consider the scalar model nonlinear equation3 

fg+$-(C)=0 (234 

with initial condition 

u(x, 0) = 1 x < x0 
(23b) 

zzz 0 x > x0 

for which there exists a weak solution [27] that propagates to the right with shock 
speed +. The one-dimensional form of the scheme (6) or (8) is 

9 The function F(u) = us/2 for the model Eq. (23a) is homogeneous of degree two. In fact, 
a function F(U) of a single variable u is homogeneous of degree one if and only if F(U) is a linear 
function of U, i.e., F(u) = cu, c = constant. Consequently, one cannot construct a scalar non- 
linear mode1 equation where F has the property F(u) = (aF/au)u = Au (see Section I, Part C). 

581/22/1-7 
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which, for the special case (23a), reduces to 

( 
1 +++n+1 zzz US + O(At3). (25) 

In Fig. I(a) we show the numerical solution of (23) computed using the scheme 
(25) with a/ax replaced by the central difference approximation (17a). The numeri- 
cal solution is shown after 20 steps and exhibits a large-amplitude postshock 
oscillation. For comparison, we show in Fig. l(b) the solution computed using 
the dissipative second-order explicit scheme of MacCormack [28, 291. 

FIG. 1. Solutions of model Eq. (23) computed using (a) implicit scheme (29, (b) MacCormack’s 
explicit scheme, and (c) implicit scheme (25) with dissipative term (26). 

We can investigate the effect of adding dissipation to scheme (24) by appending 
a fourth-order dissipative term of the form 

-(w/8) ~x”(~~~L@x~))Y ‘v -(w/8) S4zijn 
(26) 

= -(0~/8)(~jn+z - 4$+, + 6Uj” - 4~y-l + uj”-&. 

Note that this term is added explicitly at level n. If a/ax in (24) is replaced by 
the second-order central formula (17a), then the addition of the above higher-order 
term does not disrupt the formal order of the method. According to a linearized 
von Neumann stability analysis, the one-dimensional implicit scheme is stable 
for values of w  in the range 0 < w  < 1. In Fig. I(c) we exhibit the model equation 
solution computed using (25) with (26) appended to the right side and w  = 0.5. 

B. Spatially Switched Schemes 

Although the addition of the dissipative term to the implicit scheme reduces 
the postshock oscillations, none of the solutions depicted in Fig. 1 provides 
adequate resolution of the discontinuity. We have found [30], for a second-order 
explicit scheme, that switching difference operators from central to upwind (one- 
sided) across a discontinuity greatly reduces the spurious oscillations usually 
associated with shock-capturing techniques, Heuristically, the argument is as 
follows: If a scheme with leading phase error is applied behind the shock and 
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a scheme with lagging phase error ahead, then any oscillation that develops is 
forced into the shock. Since this argument depends only on the dispersive properties 
of the schemes, we anticipate that one should be able to use the same switching 
technique for implicit algorithms. 

For simplicity, we first consider the one-dimensional system (24). If a/ax is 
replaced by the central operator (17a), let the scheme be denoted by C (central), 
and if a/ax is replaced by the one-sided approximation (17~) denote the scheme 
by U (upwind). As mentioned earlier, the scheme U for nonperiodic boundary 
conditions is stable only if the eigenvalues cI of the Jacobian matrix A = aF/au 
are all positive. Consequently, we want to devise a hybrid scheme that switches 
automatically from C to U whenever the eigenvalues of A change (spatially) from 
mixed sign to all positive. If the eigenvalues of A change from mixed sign to all 
negative, then in the U scheme a/ax would be replaced by (17d). 

C. Conservative Switching 

If one abruptly switches difference schemes, then a/ax is no longer replaced by 
a perfect or exact difference and the proper conservation property of the difference 
scheme is lost [30]. This can result in an erroneous shock speed (e.g., see the 
right-most solutions in Fig. 3) and/or shock jump conditions. To remedy this 
situation, it is necessary to construct special switching or transition operators to 
connect the schemes C and U. In [30] we devised an operational procedure for 
constructing switching operators that maintain strict conservation and local 
consistency. The first step in constructing a conservative switching operator is 
to write the two spatial difference operators, say one-sided and central, as a single 
formula with a parameter E that gives one operator if E = 0 and the other if E = I. 
The difference approximations (17a) and (17~) can be combined as 

3 1 /AS - (Ej/2) VA 
I 
Ej = 0, (17a) 

ax j - dx 1 - ($/2) v Qj ’ Ej = I, (17c) (27) 

where we have made use of the identities S2 = VA and V = ~8 - P/2. By inter- 
changing l j and V in (27) we obtain a perfect difference approximation to aQ/ax: 

1 Pa - P4/2) Q. 

j m dx i - (v42) 3 . (28) 

D. One-Dimensional Hybrid Scheme 

As an example of a conservative hybrid scheme that we call CU, insert (28) 
into (24). The algorithm is obtained by multiplying through by (1 - V9/2). To 
clarify the notation we write out the operator Vcj AA,%,“+‘: 

VE. AA .nUn+l 3 33 = V~~(Aj=~ujn+f:- - Ajnujn+‘) (29) 
= •j-1Ain_l~TT: - (~j + C+1) AjnUT+’ + ~jAi”,l~i”+:‘. 
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At each mesh point j the hybrid scheme requires the pair of numbers (cj-1, l j). 
There are four possibilities and, consequently, four distinct difference operators: 

(cjP1 , EJ = (0,O) C central 

= (0, 1) C-U transition 

= (1, 1) U upwind (30) 

= (1, 0) U-C transition. 

The properties of the linearized versions of schemes C and U are discussed in 
Appendix B. It remains to discuss the properties of the switching operators C-U 
and U-C. Both operators are first-order accurate. Linear, constant coefficient 
stability theory cannot be applied to the hybrid scheme CU since one or more of 
the eigenvalues cl change sign when the switching operators are applied. In lieu 
of a more rigorous stability theory, we assume that the U-C transition operator 
is applied at all spatial mesh points and perform a von Neumann analysis. We 
find that the scheme is stable for short wavelengths (of order 2 dx) and unstable 
for long wavelengths if cI is positive with the converse for negative c1 . Conse- 
quently, if considered as a separate scheme, U-C is an unstable method. Since the 
scheme is to be applied at only one mesh point, we impose short wavelength 
stability and apply the transition operator where the eigenvalues are positive. 
The switching operator C-U is stable for positive eigenvalues and should also be 
applied where the eigenvalues are positive. To be more specific, consider the 
following example: At time level n, let the signs of the local eigenvalues cZ be 
tested at grid points along the x-axis as illustrated in Fig. 2 where the & symbol 
indicates eigenvalues of mixed sign. The values of the Q’S are then set (as indicated) 
according to the eigenvalue distribution. Note that the operational procedure 
produces a single computational algorithm that includes both schemes C and U 
and the transition operators. 

I 
Cc! + I + f 
EjOO011 I I I I 0 000 

OPERATOR C C C , C-U U U U U U-C C C C 
I- - _ - - _I_ - -,)( 

I 

FIG. 2. Recommended spatial correlations of eigenvalues ct , shift parameter cj , and operators 
C, C-U, U, and U-C. 

In physical problems a hybrid scheme such as CU is easy to implement since 
it requires only a simple test on local eigenvalues as described above. One does 
not have to keep explicit track of the shock location since the scheme automatically 
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switches from upwind to central when the eigenvalues change from all the same 
sign (e.g., supersonic flow in the case of gasdynamics) to mixed sign (subsonic 
flow). 

E. Hybrid Scheme Application (Scalar Equation) 

As an initial numerical test of the CU hybrid scheme with the transition operator 
U-C, we computed the solution of the nonlinear model equation (23a) with the 
initial condition 

u(x, 0) = 2 x < x0 
= -1 x > x0 

(31) 

chosen so that the local eigenvalue u(x, t) changes sign across the shock. In this 
simple scalar case the eigenvalue, i.e., the coefficient of a,, is either positive or 
negative; therefore, a hybrid scheme based on (17~) and (17d) could be constructed. 
However, for more practical applications involving systems of equations, e.g., 
Section III, the eigenvalues will be either all of one sign or of mixed sign and the 
CU scheme will be applicable. The discontinuity propagates to the right with 
speed 4. The top row of plots in Fig. 3 shows the numerical solution computed 
using the CU implicit scheme for a range of Courant numbers4 (V = 24t/dx). 

2 

0 

-1 17, 
” = 0.1 

2 

0 

-1 l-L)- 

Y  = 0.1 

- EXACT 

yN~~~l 

.5 1.1 1.5 I 0.1 

(a) IMPLICIT (CU) I 
I 
I 

CONSERVATIVE ABRUPT 
SWITCHING 1 SWITCHING 

I 

1.1 1.5 I 0.1 

(b) EXPLICIT (MU) I 

FIG. 3. Comparison of model Eq. (23a) solutions computed by (a) implicit hybrid scheme and 
(b) explicit hybrid scheme. 

p The Courant number is deiined to be Y = 1 u 1 At/Ax = 2At/Ax since the maximum eigen- 
value, i.e., the coefficient of Us, is two for the exact solution. 
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The numerical solutions are all shown at the same fixed time n dt = 5 units. The 
bottom row of numerical solutions were computed using an explicit hybrid scheme 
[30] that combines MacCormack’s scheme with a completely upwind version. 
The results indicate that there is no penalty in shock resolution associated with 
the implicit scheme relative to the dissipative explicit scheme. The damping term 
(26) was not added to the implicit scheme. 

The right-most solutions in Fig. 3 were computed without using the transition 
operators, i.e., by abruptly switching schemes. These nonconservative solutions 
show that the shock resolution is not obtained by virtue of the first-order transition 
operators, The only purpose of the transition operator is to maintain proper 
conservation form and is in contrast to the approach proposed by some authors 
[31, 321 of tracking the shock location and dropping to a first-order scheme in the 
neighborhood of the shock to maintain a monotone shock profile. 

III. APPLICATIONS: TWO-DIMENSIONAL EULER EQUATIONS 

We have applied algorithm (16) to the Eulerian inviscid gasdynamic equations: 

u= [i]. Ir(4= [(f+$;)]. G(u) = [,;$$;] (32) 

with the equation of state 

p = (y - 1) e - 1 
[ ( 

iii2 -+$)I 
2 P 

(33) 

where 6 = pu and ii = pv. The primitive variables of (32) are density, p, velocity 
components u and v, pressure p, and total energy per unit volume e. The ratio 
of specific heats, y, was taken as 1.4. The fact that the components of P and G 
are homogeneous of degree one in the components of u is readily apparent. The 
Jacobian matrices A and B are 

-1 I 0 
/ O 

(Y - 3)u 1 (y - 1)v I1 - y 
I 

-V I -24 

ye + -- 

P 
q (3u2 + v4j(y - 

I I 

I O 

l)UV/ -yu 

(34) 



B=- 

IMPLICIT FINITE-DIFFERENCE SCHEME 

0 I 
O I 

-1 

3-Y9;l-Y 
I -v I -24 

2 
~ 242 

2 
/ (y - 1)u I (Y - 3)u 
I I 
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The physical problems we have investigated include lifting and nonlifting 
airfoils oscillating in a free stream near Mach number one, i.e., u w  a where 
a = (ypyplp)l12 is the speed of sound. The eigenvalues of A are u, u, u + a, and 
u - a. The numerical stability of an explicit scheme would be governed by the 
largest eigenvalue u + a; however, for low-frequency airfoil motion, the pre- 
dominant unsteady aerodynamic forces are governed by the smallest eigenvalue 
u - a. Thus the use of an implicit algorithm seems justified in order to set the 
time step to correspond with the desired accuracy. 

The calculations were performed on a rectangular grid with variable grid 
spacing to group points near the leading and trailing edges of the airfoil and to 
place the outer boundaries many chord lengths from the airfoil. Thin airfoil 
boundary conditions were used, i.e., the boundary conditions were applied on the 
mean-chord line. 

The centered spatial differencing (17a) was used in the direction normal to 
the free stream and the hybrid CU scheme described in the previous section was 
used in the streamwise direction with the parameter ci determined by the local 
streamwise Mach number, i.e., cj = 0 (central differencing) in the subsonic region 
and l i = 1 (upwind differencing) in the supersonic region. For the examples 
we consider the shock is nearly aligned with a coordinate line in a rectangular 
Cartesian grid system. In more general flow problems the shock resolution should 
be enhanced by a coordinate transformation to align the shock approximately 
with one coordinate line. 

The results for a subcritical (no supersonic flow) test case are shown in Fig. 4. 
The lift and moment coefficients (C, and C,) for a flat plate with oscillatory 
angle of attack (a = cl10 sin it) were computed for various reduced frequencies 
(k = wc/2u,) where w  is the frequency of oscillation, c is the chord length of the 
plate, the subscript co indicates freestream conditions and 

(36) 

moment (per unit span) 
(l/2) p,Ka2~2 

= ] CM 1 a0 sin(wt - #2). (37) 
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The freestream Mach number (u&z,) is 0.7 and the angle-of-attack variation 
for the numerical calculations was kept small (fO.1”) so that a correlation could 
be made with linear theory results [33]. For the lowest calculated reduced frequency 
(k = 0.05), the time step used in the calculations was a factor of forty larger than 
the CFL condition would allow in an explicit scheme for the same spatial grid. 

FIG. 4 Lift and moment coefficients versus reduced frequency for oscillating flat plate, 
M = 0.7. 

FIG. 5. Midchord moment coefficients versus freestream Mach number for oscillating flat 
plate and parabolic-arc airfoil, k = 0.05. 
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The calculations were repeated for a parabolic-arc airfoil to investigate the 
effect of airfoil thickness and freestream Mach number. The changes in the angle 
of attack were once again kept small (fO.1”) to obtain the effects of the nonuniform 
steady-state flow field on the oscillatory aerodynamic coefficients. Figure 5 shows 
the midchord moment coefficient as a function of the Mach number. As the 
freestream Mach number increases, the flow becomes locally supersonic over the 
airfoil surface and a shock wave develops. The development of the shock wave 
and the corresponding change in the pressure distribution cause the moment 
coefficient to deviate significantly from that predicted by linear theory. 

0 
0 

A 0 - 
0 

> 
.6 - 

FIG. 6. Chordwise pressure coefficient on a parabolic arc airfoil, M = 0.83, thickness-to- 
chord ratio = 0.10. 

In Fig. 6 we compare the steady-state chordwise pressure coefficients 
(c, = ~/0.5p,u,~) over a parabolic-arc airfoil. The pressure coefficients computed 
with schemes C and CU are the same except in the region of the shock wave 
where the CU scheme diminishes the chordwise numerical oscillations. In the 
calculations we found it necessary to add a fourth-order dissipative term (similar 
to (26)) at the leading- and trailing-edge stagnation points (Appendix A); however, 
no dissipative terms were added in the supersonic region. 

CONCLUDING REMARKS 

In this paper we have combined the trapezoidal formula, linearization, factoring, 
Padt spatial differencing, the homogeneous property of the flux vectors (where 
applicable), and hybrid spatial differencing to construct a practical implicit 
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algorithm for nonlinear systems in conservation-law form. The linearization 
provides a noniterative, two-level, second-order time-accurate scheme whose 
steady state (if one exists) is independent of the time increment. The factored or 
AD1 algorithm retains the order of accuracy and the steady-state property while 
reducing the bandwith of the system of equations. The Pad6 spatial differencing 
allows the use of fourth-order central and second-order one-sided approximations 
within the tridiagonal structure of the system. The homogeneous property (when 
applicable) provides conceptual and computational simplifications. The hybrid 
spatial-differencing schemes utilize the dispersive properties of the numerical 
schemes to improve the resolution of the weak solutions while maintaining the 
conservation form of the algorithm. 

If nonlinear viscous terms are included in Eqs. (1) and treated by an implicit 
method, then one should at least consider computing the convective terms by an 
implicit method. This would relieve a severe explicit time-step limitation for stz3 
[l, 71 systems of partial differential equations. In addition, a variable spatial 
mesh with local refinement could be implemented without an adverse effect on 
the time step. Finally, if the scheme is nondissipative when applied to the convective 
terms, there will (according to linear theory) be no dissipative truncation error 
terms arising from the convective differencing to compete with or overwhelm the 
viscous terms. With these notions in mind, we are currently extending the algorithm 
of this paper to include the compressible Navier-Stokes equations. Although 
slightly modified, the homogeneous property and resulting simplifications carry 
through to this more complicated system of equations. 

APPENDIX A: ADDED HIGHER-ORDER DISSIPATION 

In some of our applications [Section III] of (19), we have found it necessary to 
add a dissipative term. We chose the fourth-order term 

-(w/8) dxyPu/ax4)lj N -(w/8) s*uj 

= -(w/8)(uj+, - 4~9,~ + 6uj - 4ui-l + z+J (Al) 

which was appended to (19) as follows: 
- 

.;*;l = [I - (dt/2Lil~#@)~ Bj”,k] u;“,~ - (~$6) Sy4z& 

(A24 - - 
[I + (dt/2dx)(pS), A;,,] zz;*;1 = [I - (dt/2dx)(p8)Z A;,,] .;,;1 - (wJ8) 8@%z$ 

Wb) - -- - 
[Z + (&/2dy)(p”), B;,J zz;,;’ = u;,$ - (~~$16) “,“u$ C42c) 
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where the subscripts x and y on the difference operators denote the direction of 
the difference [i.e., ($$ u~,~ = (1/2)(~~+,,~ - z+&, etc.] and w, , wy are the 
dissipative parameters. In &?a), of is from the previous sequence where the 
npmerical solution is advanced from n - 1 to n. For the initial step (n = l), 
u& is set equal to the initial value & . 

The rationale for the form of (A2) and the appropriate choice of the dissipative 
parameters come from the stability analysis of the linear constant coefficient 
form of (A2). For the constant coefficient case, we can write the sequence (A2) 
from level iz = 1 to some arbitrary time level n = m as 

t4Tk = [I - GW49 W4,l u;,, - G-416) $,Q;,k 

[I+ (dt/2dx) A(pS),J z& = [Z - (dt/2dx) A(pS),] z4jk - (wJ3) ss*z& 

[I + (dt/2dy) B(pS)J u;,, = zfk - (wJ16) Sv4uFk 

! 

[I+ (&/2dx) A(pS)J I.@= [Z- (dt/2dx) A(pS)5] u;f$ - (wJ8) Sz4u;F 

zzzzCZ= 

- == 
uy,i2 = [I - (dt/2dy) B(pS)J un+l - (~$6) Sy4uy,$l 

[Z + (dt/2dy) B(pS),] uyk = uFk - (wJ16) S;u~, . (A3) 

The sequence within the braces ( > constitutes the basic form of the linear algorithm 
(A2). However, the two successive y-direction steps within the brackets [ ] can 
be combined into a single step 

1’ + (dt/2d.Y) B(Ps)yl ‘j,k n+2 = [I - @t/2&) B(pS)J ~5 - (wJ8) Sy4uz. (A4) 

Consequently, except for the first and last steps, we have a sequence of one- 
dimensional or fractional steps of the form 

[Z + (dt/2d~9 B(pS),] u;;” = [I - (dt/2dv) B(pS)J u;;’ - (w,/8) S&;,;‘. 

According to a von Neumann stability analysis of the algorithm (A5), the scheme 
is stable for 0 < w  < 1. If no fourth-order dissipative terms are added, 
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w, = wy = 0, the linear algorithm (A3) is nondissipative except for the first 
and last steps. The term on the right of inequality (21), Section III, arises from 
bounds on the amplification matrices corresponding to the first and last steps. 

We have not found it necessary to include additional dissipation with the one- 
sided spatial difference approximation (17~). Consequently, in the hybrid scheme 
of Section II (which switches between one-sided and central spatial differencing), 
the dissipation is switched off if one-sided differencing is used. The switching is 
done in a conservatice manner if we write 

in the perfect difference form 

(V - VEJ dS2uj” = [(l - cj) - (1 - +i) E-l] Qim 

where 

Qj” = A62ui” = u;+~ - 34’+, + 3uj” - u;‘~ 

647) 

W) 

and E-l is the shift operator E-lQj = Qi-, . 

APPENDIX B: DISPERSIVE AND ACCURACY PROPERTIES OF ONE-DIMENSIONAL 
ALGORITHMS 

In this Appendix we investigate the accuracy and dispersive properties of the 
linearized, one-dimensional form of formulas (8) and (15) with the spatial difference 
approximations (17). 

Linearized one-dimensional versions of schemes (8) and (15) reduce to 

(I + $ A &) p+l = (I - $ A 2) un + O(AP) 031) 

which is a difference analogue of the linear equation ut + Au, = 0. Since the 
partial-differential equation is assumed to be hyperbolic, there exists a similarity 
transformation that diagonalizes A, i.e., 

T-‘AT = I W) 
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where the eigenvalues cz of A are real. Consequently, by defining a new vector 
v = (v, ) v2 )...) uJ = T-k, we can write (Bl) as the uncoupled system 

(1 ++L&;+l= ( * ) 1 1 - * c -5 v n + O(N) 
z ax 

) I= I,2 )...) p. 033) 

Each of these scalar equations is a second-order (in dt) approximation to each 
of the scalar wave equations 

!g + ct zg = 0, I= 1,2 )...) p. 

For simplicity, the subscript I is dropped in the remainder of this appendix. Accord- 
ing to the Fourier analysis, Eq. (Bl) or (B3) with spatial differencing formulas (17) 
will lead to neutrally stable schemes. It should be noted that the amplification 
factor for (B3) is an eigenvalue of the amplification matrix for (Bl) corresponding 
to the eigenvalue c1 of A. 

Dispersive Error 

Let g(e) denote the amplification factor for the scalar formula (B3). For example, 
the amplification factor arising from the fourth-order spatial approximation (17b) 
is 

1 - (2/3) sirP(t 4x/2) - (b/2) sin(t dx) 
g(5) = 1 - (2/3) sirP(e AX/~) + (h/2) sin(.!j dx) ’ 

v = c&/Ax (B5) 

where 5 is the wave number, i = (- 1)1/2, v is defined to be the Courant number, 
and, obviously, 1 g I2 = 1. Since approximations (17) all yield neutrally stable 
schemes, the amplification factor can be written as g(e) = ei*. The phase error 
properties of the schemes can be compared in polar plots of r#+, where 
c& = -cf At = -vf A x is the phase shift per time step of an exact spatially 
periodic solution of the scalar wave equation (B4). The range of the polar angle 
.$ Ax is 0 < .$ Ax < rr, where [Ax = rr corresponds to the shortest wavelength 
(2 Ax) that can be resolved by a difference scheme. 

In Fig. 7 we compare the phase error $/4e for the implicit scheme (B3) with 
a/ax replaced by three different approximations (17a, b, c). If the value of the phase 
error +/+, exceeds 1, the corresponding Fourier mode moves faster (leading phase 
error) than the exact solution and, conversely, for +/$e less than one, the Fourier 
mode moves slower (lagging phase error) than the exact solution. The plots are 
shown for a range of Courant numbers v. The one-sided approximation (17~) 
has a leading phase error for 0 < v < 1 while the spatially centered schemes 
(17a, b) are characterized by lagging phase error for all Courant numbers. It is 
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clear that a significant reduction of phase error is achieved by increasing the order 
of the centered approximation from second to fourth. Finally, there is a rapid 
deterioration in accuracy as the Courant number increases beyond, say, 2. 

0.7 / ,----IT- /’ ‘\ /’ ‘1 ,--. ’ / a ‘\ / (’ ’ 
FIG. 7. Comparison of phase error 4/C. for implicit algorithm (B3) with a/Ox approximated 

by (17a, b, c). 

Modified Equations and Accuracy 

The formal accuracy properties of algorithm (B3) with spatial difference approxi- 
mations (17) can be conveniently compared by means of the modified equation [34]. 
The modified equation represents the actual partial-differential equation solved 
when a numerical solution is computed using a finite-difference equation. For 
a neutrally stable difference scheme, the modified equation has the form 

where the terms on the right represent the truncation errors introduced by the 
finite-difference approximation. There are no even derivative error terms since 
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schemes under consideration are nondissipative. For the Pad6 formula (17b), 
lowest order coefficients are 

c3 At2 
/J(3) = - 12 9 

cAx4 c5 At4 
t45) = 180 - -gj- 037) 

and the scheme is clearly second order in time and fourth order in space. For the 
second-order spatial approximations (17a) and (17c), the coefficients are 

tL(3) = - 

WI 

p(5) = - 

where /3 = 1 for (17a) and /3 = 0 for (17~ or d). Consequently, although both (17a) 
and (17~) are second-order accurate, the one-sided Pad4 formula (17~) leads to 
a smaller spatial truncation error coefficient than the centered approximation (17a). 
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